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19. ABSTRACT (cont.)

In this report, two methods for eliminating membrane locking in curved shell elements
are presented., The first method is a strain projection method in which the membrane
strains are corrected so that inextensional modes of pure bending become possible. The
method is applied both to a curved beam element and a traingular shell element in which the
flexural behavior is modeled by a discrete Kirchhoff theory. The use of this projection
method introduces membrane-flexural coupling to the shell element and modifies the bending
stiffness in an appropriate fashion. Results have been obtained with this element for 0
linear analysis of static response of deep shell structures and for nonlinear, collapse
analysis of columns and cylindrical panels. The results show a remarkably rapid rate of
convergence.

The second method which is under investigation for avoiding membrane locking is the

use of uniform reduced quadrature on the 9-node Lagrange element. Results obtained in the
previous study by the author suggests that if 2 x 2 quadrature could be used in the curved .
shell element, membrane locking as well as shear locking could be avoided, and thus very
rapid rates of convergence would be achieved. However, the use of uniform reduced
quadrature is accompanied by the appearance of spurious zero energy modes which can yield
meaningless answers to solutions for certain boundary conditions.

In this investigation, a spurious mode control scheme has been developed for the 9-
node plate which eliminates spurios modes completely. The method is based on retaining the
formal consistency of the governing equations of the systems, which is equivalent to
satisfying the patch test. As a result of these properties of the spurious mode ontrol
method, results which have been obtained for this plate show nearly the optimal hi of
convergence.
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INTRODUCTION
Nr

One of the major difficulties in the formulation of effective shell

elements has been identified to be the phenomenon of membrane locking. -

Membrane locking occurs in curved shell elements when the in-plane displace-

ment approximation is not of higher order than the transverse displacement

approximation and inextensional bending of the shell cannot take place.

Inextentional bending is an important mode of deformation, and when an element

is not capable of representing inextensional bending, parasitic membrane .

energy is generated in many modes of deformation. In the same manner that

parasitic shear causes shear locking, this spurious membrane energy causes

membrane locking. Membrane locking severely reduces the rate of convergence

of shell elements, particularly in deep shells and in situations where the

bending of the shell is the dominant mode of deformation.

In this report, two methods for eliminating membrane locking in curved

shell elements are presented. The first method is a strain projection method

in which the membrane strains are corrected so that inextensional modes of

pure bending become possible. The method is applied both to a curved beam P

element and a triangular shell element in which the flexural behavior is .

modeled by a discrete Kirchhoff theory. The use of this projection method

introduces membrane-flexural coupling to the shell element and modifies the

bending stiffness in an appropriate fashion. Results have been obtained with -

this element for linear analysis of static response of deep shell structures

and for nonlinear, collapse analysis of columns and cylindrical panels. The

results show a remarkably rapid rate of convergence.

The second method which is under investigation for avoiding membrane

locking is the use of uniform reduced quadrature on the 9-node Lagrange

i"° %
.-. " .°



element. Results obtained in the previous study by the author suggests that

if 2 x 2 quadrature could be used in the curved shell element, membrane

locking as well as shear locking could be avoided, and thus very rapid rates

of convergence would be achieved. However, the use of uniform reduced

quadrature is accompanied by the appearance of spurious zero energy modes

which can yield meaningless answers to solutions for certain boundary ,,.

condi ti ons. <.#

In this investigation, a spurious mode control scheme has been developed

for the 9-node plate which eliminates spurious modes completely. The method

is based on retaining the formal consistency of the governing equations of the

systems, which is equivalent to satisfying the patch test. As a result of

these properties of the spurious mode control method, results which have been

obtained for this plate show nearly the optimal h3 of convergence.

In Chapter 1 of this report, the projection methods are developed. In

the first section, the projection method is developed for a curved beam in

order to illustrate its essential features. Section 2 then uses the develop-

ments for curved beams in a very simple fashion to develop a projection

operator for the 3-node triangular plate element; this element uses a constant

state of membrane strain and either the discrete Kirchhoff theory DKT flexural

element or a CO bending formulation with one quadrature point. Results are

then given in Section 3 for a series of static problems and two dynamic

problems involving the collapse of shell structures.

In Chapter 2, the procedure for spurious zero energy mode control for the

9-node element is developed. The development is first given in the setting of

the Laplace equation, where the role of the spurious mode control procedure is %.

quite transparent and the important role of maintaining consistency with the

ii °
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spurious mode control procedure is illustrated. Results obtained for the

Laplace equation show that by using the spurious mode control procedure, con-

vergence in the L2 norm of order h
3 can be achieved for rectangular meshes,

whereas some deterioration in the rate of convergence results when the

elements are curved or skewed. However, the same deterioration in the rate of

convergence occurs if selective reduced integration is used. The method is

then applied to plate problems. A large series of plate problems, some of

them involving situations where convergence is very slow, such as a rhombic

plate modeled by parallelogram elements are considered. In all cases, very

rapid rates of convergence are achieved with this element and no spurious

modes are present.
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CHAP ER I

STRAIN PROJECTION METHODS FOR CONSTANT STRAIN ELEMENTS

1. Introduction

The development of an effective but simple shell element which incorp-

orates the effects of the curvature of the shell but avoids locking and

spurious kinematic modes is essential for effective and economical analysis of

shells in the failure domain. However, while elements such as the 16 node CO

element are quite accurate, their complexity and high cost makes them unat-

tractive for nonlinear analysis. Lower order or flat elements, on the other -

hand, tend to be excessively stiff and a very large number are required for

accuracy.

In this paper we sketch the development of a simple, curved, triangular-

shell element. The element has the following advantages:
V

1. It correctly represents rigid body motion.

2. It correctly represents states of constant membrane strains and

constant curvatures, and thus allows for inextensional bending and

eliminates iembrane locking [1].

3. It couples bending and membrane effects within an element.

4. As opposed to various elements based on selective reduced integ-

ration, it possesses no kinematic modes [2-4].

5. While it is perhaps the simplest curved shell element (compare [5- "

17]) the element yields surprisingly accurate results, often superior

to those obtained by more complex elements.

The basis for this element is the mode decomposition technique described '.

for the curved beam in [18J in conjunction with a shallow shell theory. It
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should be noteJ that contrary to the results of earlier investigators [12,19],

use of a shallow shell theory in our case does not diminish the element's

performance in deep shell problems.

The mode decomposition technique is used to achieve an element free of

membrane locking and with the correct relationship between membrane and

bending effects. The DKT (discrete Kirchhoff theory) element [20,21] (see

also [22-24]) is used to form the bending part of the stiffness matrix. This

portion of the stiffness matrix may be replaced with any other triangular

plate-element stiffness matrix provided that corners are the only nodal points

of the element. However, the most rigorous justification of the development

presented herein is related to the DKT element.

To make the paper self-contained, we begin with a short presentation of

the major ideas in the context of curved beams. This is followed by a '

development of the triangular shell element. Finally, the performance of this

element is demonstrated by a number of solutions to various shell problems.

Some general remarks conclude the paper.

2. Curved Beam Element

A conclusion that can be drawn from [25-32] is that the ability to

represent independent bendiny and membrane strain states is crucial for the

success of a curved beam or shell element. However, satisfaction of this

requirement is difficult and has only been accomplished by using the so-called

assumed strain elements [26,27,30]. Unfortunately, this approach appears

impossible for arbitrary shell elements and so far only cylindrical shell

elements have been formulated by this method [33-35]. Another important

conclusion of past research is that the proper inclusion of riyid body motion

.--
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considerably improves element's performance L36-39], but this is not central

to the topic of this paper.

In [18] (see also [40]) a different approach has been taken to meeting

these conditions. It allows for simultaneous existence of both membrane and

bending strains in all patterns of deformations but, at the same time, for any

given set of nodal degrees of freedom, it defines certain modes of deformation -'"'-"

from which the membrane strain energy is removed. Since only the bending

strain energy is assigned to these modes, we call them bending modes. The._-

remaining portion of the total deformation is called the membrane mode. This

modification of the membrane strain energy results in a modified and better

element stiffness. A theoretical justification for this approach to curved I

beams through the Hu-Washizu variational principle is given in [18].

To describe how the bending mode and consequently the membrane mode is

defined, consider the curved beam shown in Fig. 1. To properly account for

rigid body motion and for the sake of simplicity, we consider the element in a

corotating frame whose x-axis passes through both of its ends. A theory of

shallow structures will be used with the following kinematical relationships

C : u, x + w,x  (la)

= - W,x (Ib)

..

where w describes the initial shape of the element, u and w are displace-

ments, parallel and perpendicular to the chord respectively. The deform-

ational degrees of freedom are .

;,-;
L'"""""

I- . °

W' , ,m ,,,'. '•#
"
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IT u211 ##1' 2 ' u21 : 2  1 I (a '-r

,tot 1 (w2 _ w1) (2b)

2 tot 1 (w.w (2c)
2 - -(w 2 - w1) (2c)

where u21 is the relative longitudal displacement of the right end with
tot t e t t l'''"'

respect to the left one, 0I are the deformational rotations and 4 I the total

rotations of the nodes.

0
The following interpolations are used for u, w and w

u2 (3a)

w = L (OINI + *2 N2 ) (3b)

w0 = L ( INI + a2N2) (3c)

where a, a2 are rotations associated with the initial shape of the element, L

is its length and

NI 2 2 + (4a)

N2 : 3 .2 (4b)

(4c)

2! e. ..% '.5.
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In view of Eq. (1b) it is evident that the distribution of curvatures is

related exclusively to w. However, based on Eqs. (3a,3b) and (la) it is also

evident that for any K * 0, when wo * 0 then 0 0, so inextensible bending

states are impossible for the approximation given in Eq. (3). This is

precisely the cause of membrane locking discussed in L11. However, as opposed

to the reduced integration employed in L2], membrane locking can be eliminated

by mode decomposition [18], which provides a more rational and accurate

method.

In the decomposition technique, through physical arguments certain modes

of deformation are required to be free of membrane strain energy. An operator

is then developed so that the element satisfies these requirements. For

example, in a curved beam, the nodal displacements are decomposed into bending

and membrane modes. In bending modes, the membrane strain energy is required

to vanish. A similar approach has been developed to avoid shear locking [3].

To define the bending mode of this decomposition, note that in inex-

tensional bending, the chord of a curved beam must, in general, change in the

blength. This longitudinal displacement u21 is associated with the rotations

€i and 2 and define the bending mode. This mode of deformation must be free

of membrane strain energy for inextensional bending to be possible, which is

imperative if membrane locking is to be avoided.

The bending mode can be easily determined by considering that, for the

displacement fields given in Eq. (3b,3c), and the curvature field defined in

Eq. (Ib), inextensional bending is accompaniedl by the following extension of

the chord ."- .

...................... ......... t .....
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ub = L W x dx = L 2- a-I + 7 2) + 2 L i- a2 +  
-1a

0

.. ,.-.

(5) 4.

If it is assumed that e = 0 (inextensibility) the expression can be derived

from Eq. (la). The complete set of nodal degrees of freedom in the bending

mode is therefore

(db)T =[U

Since the sum of the two deformation modes gives the total deformation, the

membrane mode is described by

(dm)T [u2 1 . U (7)21..

The strains related to both of the above modes can be computed according

to Eqs. (la,lb). However, the membrane strain energy associated with the

membrane mode should only be considered in deriving the stiffness. Thus the

strain energy is given by

U = Db  dx + D 2 dx (8)
0

where

4.,, -

, 5. ."_
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- 2 1 -1

Ob EI, D EA L =2 (9)

and E is Young modulus, I the moment of inertia and A the cross-sectional

area. The element stiffness matrix, as usual , is obtained from Eq. (8) and is

given in terms of the deformational degrees of freedom d by

R Rc1  Rc2

*WL
2  L L

E Rc1
K= - i:- +R 1  2R 1c 2  (l0a)

Rc2  2
2 +Rc c2  4 +Rc2

* where

AR (l0b)

2

c' 1 (10d)
C2  T2 Ua

-~ The global stiffness matrix is

IT K T

KTpK A(11)
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[C -S 0 c s 01

T1  f s/L -c/L 1 -s/L c/L 0 (12a)

-s/L -c/L 0 -s/L c/L I]

s = (Y2" yl)/L c = (x2 -xl)/L (12b)

It is important to note that inextensional bending is now possible and

that, through the nonzero values of K12 and K13, coupling between membrane and

flexural behavior is introduced. Hence the main characteristic of a curved

element is retained.

Remarks:

1. Although a physical approach has been presented here, a formal

equivalence between the above formulation and a mixed formulation has

been established in [18]; the technique can also be viewed as a
% 

. . ."

strain projection method.

2. It can be shown that this formulation is also equivalent to an

"exact" (without any modifications or reduced integration) Z,

displacement formulation which can be obtained from the present one

by replacing the linear interpolation for u given in Eq. (3a) by a

fifth-order polynomial that satisfies e = 0 at each point of the

beam.

3. The same approach can also be adopted for higher order elements,

[18]. However, the higher the order of the element, the less severe

the membrane locking [2].

Ile. oW.,% 
t., *,
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4. For a straight beam, the stiffness matrix obtained from Eq. (8)

reduces to two matrices: a bar matrix and a beam matrix with no '.

interaction between them. ' "

3. Curved Triangular Shell Element

The triangular shell element has three nodes at its corners and the 'A-'".%

corotational plane (x, y) is always defined by these nodes as shown in Fig.

2. The vectors e I = 1 to 3, are unit vectors in the positive directions of

the local coordinates of the sides, &I (u,1) --

The nodal degrees of freedom at each node are

t tot tot tot etot tot= 1 to 3 (13)do ( U w a 1 1 to 3 (13

For simplicity, the basic developments will be presented in terms of . '.

deformation nodal displacements . 5.

9. ., ,
dT (nT T (14a)

n= (n , n2, n3) (14b)

eT =(e , ey, ex 2  ey 2  
0x3, 9y3) (14c)

where ni is the elongation of side I and exI, 6yI are the deformation nodal

rotations at the node I, which are given by

S " . -

" -.

'A%;

. . " - ." . . .. "". . " . . " " . .
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etot

x x tw (15a)

xyi yI ".X.e

toto

where w and w are the rigid body rotations of the element.

The membrane state of strain is considered constant with linear N %_

u and uy and the discrete Kirchhoff theory (DKT) is used to describe the

,- bending properties of the element. In the DKT element, the rotation field is

quadratic and the transverse displacements are cubic along each of the sides

[2U).

It should be noted that the discrete Kirchhoff constraints are imposed at

three points along each side, which guarantees orthogonality of the tangential

component of the normals to the midline at any point of the side (see [20,21] .

for details). Therefore each side of the element deforms in exactly the same

fashion as the curved beam based on Kirchhoff (not discrete Kirchhoff) theory,

described in the previous section. Thus, if the in-plane displacements are

linear (strains are constant), inextensional bending is not possible.

Therefore, a modification similar to that employed in the curved beam

element is made: the in-plane elongations which should accompany inextensional -

bending are first determined, and their contributions to the membrane

strain energy then are removed.

The initial curved shape of the element is described by w°(x, y), which

along each of the sides I is given by

0 al I
1= c N1 ( ) 1 N2 (1) (16)

'S

5%"

% ° ,'%- ,



where ai and al are the initial rotations of the midline for side I, zI the

length of side I, and N (E) are given by Eqs. (4).

In the DKT element, the transverse displacements along each side are

,, given by

w = I N + I N () (17)
. 1 " 2 2 11

where

= "xJeIy yj eix (18a)

I exl eiy 6yI eIx (18b)

and J I - 1, J =3 for I - 1= 0.

The elongational strain and curvature along each edge are given by

. . .

Es U s s + W 'O Ws (19a)

% - W,ss (19b)

From the similarity of Eqs. (1) and (3) to (16), (17) and (19), it is

readily apparent that each side of the plate behaves exactly like the curved

beam described in the previous section. Thus, if inextensional bending of the

shell element is to be possible, the elongations of the chords associated with

bending must be omitted from the membrane strain energy.

The bending elongation component of each side is given by the counterpart

". . - . . . . . . . . . . .. % . --
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of Eq. (5),

b I I 1 1 1 1 (21

"' -3-0 L1AI(4 I~ + a +M 2 XI (a14- )(0

Thus if the total strain energy is taken to be

I T I b) 11b) (21)
7,. b-.

then bending without any membrane strain energy will always be possible. In

the above, Kb is the plate bending stiffness of the element expressed in terms

of its 6 deformation modes, 8, and Km the membrane stiffness expressed in

terms of the deformation modes n; Km is identical to the stiffness of the

well-known constant-strain triangle but expressed in an alternate set of

degrees of freedom, it is given in Appendix A. It is also possible to

describe K directly in terms of nodal displacements.

It is convenient to express nb in terms of e by

b T (22)

where T is given in Appendix A. Using Eq. (21-22), the stiffness of the shell

element can be shown to be given in terms of the deformation degrees of

freedom by

KK. ,

K (23) -"-K M  K + TT K n T--

.-b '- ,-._..-,
5" %" %

• ,4...
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In the above equation, the effect of the decomposition becomes transparent:

1) it introduces membrane-flexural coupling through the terms K T. 
-

2) it allows the membrane stiffness to effect the bending stiffness.

These effects are absent in any flat shell element. Thus, the most important

features of a curved element are embodied in this element.

Remarks:

1. In this element, independent states of arbitrary curvatures (bending .'e

modes) and membrane strains (membrane modes) are possible. Thus the ele-

ment can always bend without extension. Although not all shells allow for

inextensional bending (see [32] for example), the ability of the element %

to undergo inextensional bending, regardless of its shape, is beneficial,ft..

because if inextensional bending is not possible in a particular shell,

the appropriate restrictions on the bending are introduced by interactions

between elements, but not the element itself.

2. For linear problems, the element stiffness matrix of Eq. (23) can be

expressed in closed form, so no numerical integration is needed. This

results from the fact that all the matrices involved in Eq. (23) can be

expressed in a closed form (see [21] and [41] for details).

3. For a plate problem T = 0 and no interaction between bending and membrane

effects exists.

4. Equation (20) is fundamental in deriving the element stiffness matrix for

the curved triangular shell element. It is valid for a cubic approxi- .

mation for the initial shape of the element sides and a cubic approxi-

mation of transverse displacements. For those reasons, the DKT element

which incorporates cubic transverse displacements along each of its sides .,..'

seems to be appropriate for the present development. However, other ele-

a-" o

,-':

... ~C~
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ments can be formulated with cubic interpolations along each side. The

matrix T of Eq. (22) would then remain the same but the matrix Kb of Eq.

(23) may change. Therefore K can be associated with other formulations

-P of the triangular plate element without changing the matrix T. In '-

addition to the results obtained with Kb associated with the DKT element,

results obtained with Kb from an earlier paper [4] will be presented (see

also [3]). This matrix was found to closely approximate that of the DKT .

element although it is simpler and more economical computationally.

4. Numerical Results

Results are presented for a variety of linear static and nonlinear tran-

sient problems. The purpose of the first set of examples is to illustrate the *-

enhanced accuracy of the curved element over a flat element, and to verify the ,/'
.% ._%

absence of membrane locking. Moreover, some deep shell problems are con-

sidered to emphasize that elements based on shallow theory do converge to the

deep shell solution. The second set of problems serves simply to illustrate

the potential of this element in highly nonlinear situations such as

encountered in collapse and post-buckling analysis.

Results are presented for two bending stiffnesses: the DKT stiffness
L:

[21] and the CO bending stiffness developed in [3,4].

Bending of an Infinite Circular Cylindrical Shell

The problem description is given in Fig. 3. This is in fact an arch in a

state of plane strain. The problem has been solved with the curved shell

element and with a flat element. The results normalized with respect to the

analytic solution are given in Table 1. As can be seen, the results improve

%
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dramatically when the initial curvature is taken into account.

For a different arrangement of elements, the results obtained with the

flat elements may be better. However, in the analysis of general shells, the

selection of a mesh is not as easy as in this case. We therefore have -

selected the mesh shown in Fig. 3 to illustrate that a combination of flat

elements and an inappropriate mesh can result in a considerable stiffening of

the model. Our element successfully avoids this problem.

Pinched Cylinder with Free Edges

The cylinder and the related data are given in Fig. 4. This problem has

been analyzed by many authors and their results are compared to ours in Tables

2 and 3. The total number of degrees of freedom was the same for all

solutions. Both curved and flat elements with both the DKT and the CO bending

formulations were used. It is clear that our element compares very well with g. ,

the most accurate elements of others, including formulations which were -

designed specifically for cylindrical shells, [36], [43].

It is interesting to see that in this case the improvement achieved with

curved elements is small. This is perhaps because the variation of displace- ..

ments along the meridian of the shell is relatively small (in spite of the

concentrated force) due to the small ratio of length to radius (see Fig. 4).

This problem is not a demanding test on the performance of curved shell

elements.

Pinched Cylinder with Diaphragms

The problem and pertinent data is depicted on Fig. 5. The results

obtained with both curved and flat DKT elements along with those presented in

[42] are reported in Table 4. The erratic behavior for the 2 x 2 mesh is due

- -.. . .. . . . ..- - -

. -4 .- _ "°* '.--
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to the inadequacy of the shallow shell theory for the relatively deep element

emerging from such a coarse mesh. A considerable improvement is obtained with

curved elements.

Impulsively Loaded Cylindrical Panel

This problem is defined in Fig. 6 and Table 5. The ends of the panel are

simply-supported, while the side boundaries are fixed. Both material and

geometric nonlinearities were considered. The load was applied by prescribing

the initial velocity given in Fig. 6 to the nodes in the region loaded by the

explosive. Figure 7 shows an undeformed and deformed mesh. Table 5 compares -

the results obtained for various meshes to an experimental result. It can be

seen that the convergence to the experimental value is relatively slow. The

reason for this however, is not the accuracy of the element, but the extreme .- .

localization of deformation which occurs due to the formation of plastic

hinges.

Collapse of a Hollow Column

Figure 8 shows the simulation of a hollow column loaded axially. The

time history of the load and material and geometric properties may be found in
-** -, *%

Fig. 3 and Table I of Ref. [44], respectively, where results obtained with a 4

node quadrilateral element using one-point quadrature and hourglass control

are also given. The results obtained with this element compare well with

those obtained for the quadrilateral, except the model is somewhat stiffer.

Note the severe change in cross-section which accompanies buckling.

* * -. J.. ... - - - -- - - - - - - - - - - - - :.-. '..

,-.,. .:- i
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APPENDIX A

The matrices Km and T of Eq. (23) will be presented here in the form

consistent with the deformational degrees of freedom given in Eqs. (14b) and

(14c).

To obtain the required form of KM note that it represents membrane strain

* energy of the constant-strain, flat triangular element

UM f 'ET D dA (24)

where si is the area of the element

D L2 V 1 0(2a
(1-v) 0 -

~T [Fx e 9Yy (25b)

For a constant strain triangle it is natural to replace cx C,, YX with

strains along each of its sides e ~ Since

CI , I1 1, 2, 3 (26)

and 
-4

2- 2

5, I
4

j* x e~- - J -'Z .Ix +. c4 y'* e IY + Y *.*'e %**e (27)



22

we obtain

=s-
1 n'28)'q

where

1 x 1 lY 1 Ix ly

iSi X £ e2 Xe xe2 (29)

I isthelength of side I and e1 , e are x and y components of the vector

(i.2). In view of Eqs. (24) and (28) the desired form of the matrix
is .

-1 30-m ) D 5(0

To obtain the matrix T of Eq. (22) we observe that it defines the

b
elongation n,~ of each of the curved sides of the element due to inextensional

*14
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4~ " t%,

-- ie XC Ie 0 0 11Cl l

T "2 2 ce 2 y £2 ce 2 x 0 1 22"2

,3 , 3
1 3y 31 3 2 3y 3 2 3x-

(31)

where

C 1 2 a I I " (32 )

2 2 1 1 Ic a I5 2 - (32b ) , ,

2 152.S. 1

• [...,~
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TABLE I

Displacement of loaded point In Circular Arch, Example I

2 nui~e. ~Flat elemient (DYT) Curved element (DYTI

tlmnsI U V V

4 9 0.482 0.307 0.994 1.127
3 1S8 0.256 0.230 1.035 1.028

%12 i 27 0.301 0.237 1.007 1.008

16 36 038 0AS 1 .002 1.003

U.Horizontal and vertical deflection, and ,are normalized with
respect to analytic solution.

%J

- % -7
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TABLE "'N

Deflection Unjer Point Load for Pinched Cylinder

with End Diaphragm* . ."

mesh degrees i OXT Ovorkin 0,%
on of and

octant freedom Curdfa a~ 2

.x 2 22 1.324 0.054

4 x 4 84 0.777 0.462 -

5 x5 130 -- 0.51

6 x 6 16 0.869 0.727

8 8 328 0.148 O.MGO "

10 I0 SlO 0.988 0.930 0.93

.44

Results are normalized by exact solution. 0.P.24P x IC %

TABLE 5

Material and geometric constants for impulsively 4',4. 2

loaded cylindrical panel

Young's modulus E • 10.5 X 10 6 e .'

Density a - 2.5 x 10' 
4 

lb-sec 2/in 
4

Poisson's ratio -J, 0.31 -- '

Y i e l d s t r e s s 4 4 0 C 0. p s i ' ' ---

Plastic modulus Ep 0 . psl f., ,

Impulse over RI  5650 in/see _c-r

-4..,.

,-.-.

%°

,.... .

* 106
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Final Displacements of the Cyi indrical Panel

%I for Various Meshes with [lyushin field Condition

S-r

Mesh for Displacement Displacement CpJ tim
mal f-panel at y - 6.2S at y -9.4' ICt1l 3033

6 A16 0.117 0.401 11

8 x 16 1.043 0.448 13.8%

10 x 20 1.081 0.462 162

%12 x 24 1.124 0.473 291

16 x 32 £ 1.1,13 0.530 570 d

experimental t.j2 1.20

%

~21

Figure 1. Curved beam nomenclature.

%4,

.% *I -e%
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CS% %..
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3K

x2 -12

Figure 2. Nomenclature and coordinate system for shell element. l* '

h-0.1

U

Figure 3. Example 1. Sending of an infinite cylindrical Shell.

Z*
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L/2 L/2,v

IF.~/

L- 1.315 { iP.10.0

Figure 4. Example 2. Pinched cylinder with free edges.

P

L/2 .1 L/2

-n,

dlprmR-300.0 E-23.0-10

L-800.0)0.
h-3.0 P P-1.0 a.

Figure S. Example 3. Pinched cylinder with end diaphragms.
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Filure 3. Impulsively loader. cylindrical panel.
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CHAPTER 2

SINGULAR MODE CONTROL IN 9 NODE PLATE ELMENT

1. Introduction

The numerical quadrature of higher order elements is a critical issue

which must be treated with considerable care. It was recognized by

Zienkiewicz et al [1] that in order to obtain reasonable rates of convergence

for CO plate and shell elements, reduced integration of the shear terms is a

necessity. Recently it has become clear that for curved elements,

overintegration of the membrane terms [2-5] also impairs convergence; this

phenomenon has been termed membrane locking. In fact, this phenomenon also

occurs in the application of continuum elements to curved members [5].

On the other hand, reduced integration leads to the appearance of

spurious singular modes, and several of the elements which have appeared in 'Z .*

the literature for plate analysis cannot treat the modal analysis of unsup-

ported plates because they rely on boundary conditions to suppress these

spurious modes; see for example the results in [6] on the plate element of

[7]. These modes are also known as kinematic modes, spurious zero-energy ,

modes, and for the 4-node quadrilateral, as hourglass or keystone modes.

In the 4 node continuum and plate elements, considerable progress has

recently been achieved in controlling hourglass modes. Kosloff and Frazier

[8] first recognized that in controlling spurious singular modes, care must be

taken to ensure that the resulting element will pass the patch test and not

adversely affect rigid body and constant strain patterns. While the method of

[8] involved the solution of systems of equations, in [9-10] explicit forms of

the operators for controlling singular modes were developed. In [11], these

forms were derived from the consistency conditions (which are equivalent to

the patch test [12]). This, in constrast to [8], makes the development of

simple, explicit forms of the spurious mode control feasible for a large class

34
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of elements; by using a mixed variational principle, the identification of

I..'..

control parameters for nonlinear materidls was also achieved. Applications of -

these concepts to the diffusion equation, plate, and shell problems are given

in [12-14], respectively. The development of plate elements of proper rank

has also been undertaken via hybrid [15] and mixed formulations r16].

In this paper, the consistency conditions will be used to derive a

spurious mode control for the 9 node Lagrange element. Pawsey [17] evidently

first noted their appearance in higher order elements. Shortly thereafter,

Cook [18] proposed a control which consisted of simply adding a spring between

the center nodes of all elements and a fixed point. This method obviously

would not pass the patch test, but its performance in simple problems is not

bad. The presence of spurious singular modes in the 9-node Lagrange elements

with 2 x 2 quadrature was demonstrated numerically in continuum elements and

the diffusion equation in [19] and [20], respectively. Cook and Zhao-hua [21]

have proposed a control method which consists of perturbing the 9-node stiff-

ness by that of the 8-node serendipity element. This element passes the patch

test but requires condensation of the interior node, which is awkward for

nonlinear applications.

In this paper, a method for controlling (or stabilizing) the spurious -

singular modes by using the consistency conditions in the manner of [11] is

developed. The control is first developed for the diffusion operator because

it is the simplest setting in which these modes appear; Section 2 gives the

discrete form of the diffusion equation to be used here. Section 3 describes -

the spurious mode control procedure and Section 4 gives results for selected -

problems. The important feature of these results is that with 2 x 2 quad-

rature of the 9-node element and hourglass control, the convergence rate of i,

-4
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the element in the L2 -norm is still almost h3 for straight sided elements.

In Sections 5 and 6, the Mindlin type plate element and the appropriate

stabilization procedure are developed, respectively. In this setting, reduced

quadrature is imperative because full quadrature results in locking. Results

are given in Section 7, which demonstrate almost h3 convergence for both

curved and straight elements. Conclusions are given in Section 8.

2. Discrete Laplace Equaition With 9 Node Lagrange Element

The Laplace (diffusion) equation is considered in the form

(:ij U'j)'i + s = 0 (2.1)

where

u = dependent variable, temperature for heat transfer;

ai = diffusivity constants, conductivity in the case of heat transfer;

s = source

Standard indicial notation will be used, with lower case indices designating

Cartesian components; all repeated indices are summed. Commas denote

derivatives with respect to the following variables. All constants and

variables are considered functions of x and y.

The dependent variable u and a test function Su is approximated by shape

functions Ni(x,y) in each element by

nN I.
N1(x,y) ue N N (2.2)

I.iA - ~ '-
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3 7 .

where upper case subscripts refer to node numbers and nN is the number of

nodes possessed by the element. Following standard finite element procedures,

the conductance matrix can be shown to be given by -.

Ke [Kd]e = f N. ij N dn (2.3)

The above is often written in the form

Ke  / T  DS1 (2.4) ";'

where

I bT NI,x (2.5a)
NI ,Y ii

N I 'y

['1 1  a12 ] (2.5b)

where the symmetry of the coefficients ai* has been invoked; B is called the

discrete form of the gradient operator since (see Eqs. (2.2) and (2.5a))

B i ui e u =T e (2.6)
~~I=1 U'ii

and the transpose of B is the discrete form of the divergence operator.

For the 9-node Lagrange element, the shape functions N, are

:-_..?

,,,- ,,-
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N1  ~~(~ ~I =3(J-1) + K (2.7)

where j(0) are the standard one-dimensional Lagrange interpolation functions

in terms of the reference coordinates &,ni (see Fig. 1) over the points (-1, 0,

+1) which are

2

2M (2.8)

1

2

The reference plane is related to the physical plane by

"'N
Xi NI Xi I Zi (2.9)

where xi, are the coordinates of node 1; the nodal coordinates are sometimes

arranged in 2 column matrices xi, where x= - = V

When numerical quadrature is used, the conductance matrix, Eq. (4), is

evaluated by

n G
Ke = ~ B T(x)D ) ( 4 ) (2.10)

a=1 a '-a 'a -a ~4

where xQ= (xc, yP), a =I to n are the quadrature (integration) points
'-a a aG'

and p the quadrature weights including the Jacobian. The above can be 4

written as

5r7
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Ke ST DB (.1

where ~ ,

B(XQ)

1'- (2.12)

B(x
nG

p1 D( Q) Q

0- P2 0~2

. . . . . . . . ...... .. . ....... (2.13)

nG n

Consider the quadrature scheme indicated in Fig. 1. Using Eq. (5a), and

using the notation b b can be written for 2 x 2 quadrature as

.* .N . . . .'

O& P~.~ .. . ..

*'..%
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T ( Q) 1

11/ b~x ) ( " o"T
= 1 21

* •(2.14)

4 -24

The rank of Ke is at most equal to the rank of . This is a consequence

of the fact that the dimension of the null-space of ~ is equal to that of the

. null-space of Ke because if 9 u = 0, then Ke u = 0; see Eq. (2.11). With this

quadrature scheme the rank of 9 could be at most 8, since ~ has 8 rows;

- however one of these 8 rows is a linear combination of the other 7, so the

": rank of B and Ke is 7; this rank deficiency has also been reported in [20].

3. Spurious Mode Control for Laplace Equation

The essential feature of an effective control of spurious singular modes '-

is that the stabilization matrix should not result in a violation of the

• :consistency conditions. The consistency conditions, which are in a sense

". equivalent to the patch test [22, 23] require that

x. = 6.. for all a (3.1)

,'.5

~T s 0 or s =0 (3.2)

where

..4Z .
SI- _- --,

,%** 44
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~s = 1, • I, , I, , I• • i](3.3).
V. .4.

.r Equations (3.1) and (3.2) were verified algebraically for rectangular elements

and numerically for a large variety of curved elements.

Note that Eq. (3.1) corresponds to the requirement that xi,j= i (cf.

Eqs. (2.5a), (2.9)), i.e. that the gradient of a linear field be computed

exactly, while Eq. (3.2) implies that any constant field has a zero

gradient. Using Eq. (2.11), Eq. (2.16) can be seen to imply that -.

Ke s O (3.4)

Thus s is in the null-space of B and Ke. The vector space spanned by s is

called the proper null-space of Ke because the gradient is expected to vanish

for a constant field u(x,y) which is associated with the nodal values ue s.

It can also be shown that

bT -
b. h 0 or B h =O (3.5)

Ke h : 0 (3.6)

where

h = [+1, -1, +1, -1, 0, -1, +1, -1, +1] (3.7)

,. 3.' .

Equation (3.5) has been verified algebraically for rectangular elements and ""

". "°° ..

• . .' '. ,' ' - -. 4 4,' . -. . - '-. - . -'- . - ...' > . - - . . . . . -° " " : . .- " .- , .. ' - . " --.-.. .. ,. ', '. '. ". °' - " . .. ', . .



42
°%

checked numerically for a large number of rhombic and curved elements; Eq.

(3.6) follows from (3.5) because of Eq. (2.11). The one-dimensional vector

space of h is called the improper null-space of because the gradient of the

function u associated with the nodal values ue h is obviously not zero, as"'Z.

can be seen from a depiction of this mode in Fig. 2.

Simple examination of Eqs. (3.3) and (3.7) reveals that the vector h is

also orthogonal to s, i.e.

hs S 0 (3.8)

so that the entire complement to the proper null spacr. of s is spanned by the

9 vectors b. and h.
-la

The control of the improper (spurious) mode is accomplished by defining

an additional generalized gradient by

Ta e

Te (3.9a)

and a generalized flux by

.= - (3.9b)

where the determination of is described later.

The resulting element conductance matrix is then given by

e = B + -T (3.10)I.-

- -2

:_ -: • . . . ., . . -.. . .. .. ... .- . .. . ... .. . , .. . .. .. . . . .. _.. -..- -.: .. ... .. . ,. . . -. . ., . . .. . . ., .. . ..- . . ,. ., .. . .. .. ..
"m" ° " " . """ . " . " o " . " " ° " . t " . " . " ." . " . " . " " . " . " ° " ' , " . t " . w " .
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where the second term in the above is the stabilization matrix [6,12].

If the above stiffness matrix is to meet the consistency requirements on

linear fields, it is sufficient and necessary that vanish for any nodal

values associated with the linear field [11]

u c + C + c cix i  (3.11a)

that is, for nodal values of u given by

u co s + ci x (3.11b)

the generalized gradient g must vanish. This is equivalent to the requirement

that

T
S(cs+c i x)=0 (3.12)

for all ci, i = 0 to 2. Since the 10 vectors bi, s and h span the 9

dimensional vector space R9, the most general form of , is given by

4
=I [alk + a 2a b2a] + agh + alO (3.13)

Substituting the above into Eq. (3.12) and using Eqs. (3.1) (3.2), (3.5) and

(3.8) yields

; ,.,*-. .. . -. - . . .. * .% .- . - .--- . .'- . . -- . -
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T T a 4

(aU s) + c1 (a 9h x + a1s Tx + ala

OLl

+ c2(aghT + alT + a = 0 (3.14)
2 2a

Since the above must hold for all ci , it follows that

a =0 (3.15a)

a9 hTx + a =0(3.15b) --+-

x.1
4 

.

T
a9  

+ =I a 2 =0 (3.15c)cla

Equations (3.15) represent 2 conditions on the 8 parameters aia. Therefore

considerable leeway is available in the choice of these constants if

consistency is only required with respect to linear fields. It can be met by

j letting • ,.. 4

• . _ ~I a T x," '
a la - ah X. a : 1 to 4 (3.16a) e*, e

4

a2 1 a9 T  a = 1 to 4 (3.16b)

% "

which with Eqs. (3.13) and (3.15) gives -"

h-1 [(hTx) T ( 4 .4".-"

4- +  (h , i 2a= (3.17)
4a=1 ""

.4

.....

,1

....

.. ... ... . . ,. . . . .... ........ :...................-.... ..... ..-.-.. ..--..-.-...-....+ ..-
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The common constant a9 has been omitted.

For purposes of constructing the stabilization matrix, (3.10), the

constant a is expressed in terms of a stabilization parameter

c by

a_ TP b.i (3.18)

200 a=1 a -'"" I'

In this form e 1 closely approximates the exactly integrated matrix for

rectangles when a is isotropic.

Remark. This procedure involves 8 arbitrary constants, a1a and a2a, so it

would be advantageous if consistency of the quadratic and biquadratic poly-

nomials could also be enforced. However, the resulting consistency equations

are singular and we have not been able to circumvent this difficulty. , .

Furthermore, quadratic consistency is not satisfied by the 9-node element when

the element is not a parallellogram, that is,

b T u u, (xQ) (3.19)

when u is a quadratic function of (x,y) and u are its nodal values.

Remark: Equation (3.17) can also be written in a form easily implemented on a

computer as follows

4 Q4

YI= h " 1 I B (x + h I B (3.20)
1 4 a= 11 -a ya= 1 a

where

I ']
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1I
hx =hTx h = hTI (3.21)

and xa are thL 4 quadrature points.

4. Numerical Examples for the Laplace Equation

Several problems were solved for the purpose of examining the performance

of this spurious mode control procedure, with particular emphasis on the rates

of convergence and the effects of varying the parameter c. All of the

problems solved were linear and, except for one, steady-state. For

simplicity, the dependent variable u is called the temperature throughout this .- ,.

section.

Example I is defined in Fig. 3. Three meshes were used for this

problem. The temperature distribution along the axis B-C is compared with the

analytic solution in Fig. 4. Figure 5 shows the results for the fine mesh

with c = 0.1 and 1.0, respectively. It can be seen that in this problem the

effect of the stabilization parameter P is minimal. Because this problem has

a prescribed temperature along all boundaries (Dirichlet type), 2 x 2

quadrature without stabilization does not lead to any spurious modes, so these

solutions primarily show that the introduction of this spurious mode control

procedure does not distort the solution.
Example 2 is described in Fig. 6. Again, three meshes were used as shown

in Fig. 6. Four-fold symmetry was used in these problems and the lines of

symmetry are considered insulated, i.e. the gradient vanishes along the lines

x = 0 and y = 0. Since this is a natural boundary condition, it need not be

explicitly enforced. The solutions for three different values of c are given

~• - °o* K
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in Fiy. 7. This problem, because of the shortage of essential boundary

conditions, can exhibit spurious modes, and as can be seen, for the lowest

values of e, oscillations in the temperature u are quite clear. For

C= 1.U, the oscillations are almost completely eliminated and the solution

agrees well with the analytic solution. Note that the results with p +

insufficient stabilization do not oscillate about the correct solution.

Example 3 is identical to example 2 except that a Dirichlet boundary

condition is applied to the circumference, see Fig. 6. Results for the three

meshes in Fig. 6 are given in Fig. 3, and compared to the analytic solution;

results for two values of e are given in Fig. 9. Both agree well with the

analytic solution.

Figure 10 shows the L2 norm of error as a function of element size h for

examples I and 3, which are rectangular and circular domains, respectively.

The L. norm was computed by evaluating

2  e f (uFEM analyticE - do '" ..

e=1 o
ep

and 5 x 5 quadrature was used to evaluate the above integral in each element. -

Results for both the stabilization procedure with c = land 3 x 3 quadrature ...

are given. For the square domain, where the elements are all straight sided,

the slope of this curve is 2.95 for both the stabilization procedure and 3 x 3

quadrature. Thus, for this case the stabilization procedure has no undesir-

able effects on the rate of convergence. In the circular domain, example 3,

where some of the elements are curved and irregular, the situation is more

complex. For the meshes studied, the absolute accuracy of 3 x 3 quadrature is

better than that of stabilization procedure. However, 3 x 3 quadrature exhi-

'o

S. - - +"- A , -. " .+-."-"-+ g. A"- "- -. . -, " . '-."- -"-"- . .. .....-.+" " ' .." ." ".". - -' -" " , -. " " -. -- i''+ ; '
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bits a definite reduction in the rate of convergence with decreasing element

size which is absent in the stabilized element. Average slopes are 1.9 for

2x2 with stabilization, 1.4 for 3 x 3 quadrature, so for these irregular ..

meshes, neither 3 x 3 quadrature nor the stabilization procedure retains the

optimal h3 convergence of this element. The results for even higher order
-. ".

quadrature, 4 x 4 and 5 x 5, are almost identical to that for 3 x 3

quadrature.

Figure 11 is included to show the effect of spurious modes more

dramatically. In this problem, a circular domain with an insulated outer

boundary was considered. A point source which is a step function in time is

applied at the center of the domain. The time step in this problem is one,

and evidence of spurious oscillations is quite clear within 20 time steps.

Within 40 time steps, the entire solution is dominated by the spurious

oscillations. Note that in this plot all nodes are connected by solid lines,

so each 9-node element is represented by 4 adjacent elements in Fig. 11.

5. Discrete CO Plate Equations

The general theory for CO plates, which are often called Mindlin plates,

is presented in [24]. In this theory, the deformation of the plate is

described by three dependent variables; a transverse deflection w(x,y) and

rotations 0x(x,y) and e (xy). The element has 9 nodes with 3 degrees of

freedom per node and the three fields are approximated in the element by the 9

shape functions, Eqs. (2.7 - 2.8) in the form P.

,. n N '.- .,

nN
w(x,y) = NW(5.1)

...
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n.

x(X,Y) NI xI  = N ex (5.2a)

N
ey(x,y) N16y =N y (5.2b) ..

The element stiffness matrix K
e is given by

A A. Ke - IAe BbDbBb dA + IAe s s d 53s-

- bending stiffness shear stiffness

where Ae is the area of element e, and

0 0 N,

0 II
L-' (5,4

, . .%.
'"~ %,%~

B = -N(5.5)

i0

Iw1 . " .'

Sx 0 (5.6).-,

--' . ~.'. • .

I-- " *

A. .......

~ %i

-" __ .W'P

0- 0P I,'-

2'' 
W.
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Ps  KGh 0 D Eh3  (5.7)
L0 1 12(1 v

. ,,.-

Here h is the thickness, E is Young's modulus, G is the shear modulus,

K is the shear factor and v is Poisson's ratio.

This element locks if 3 x 3 quadrature is used for both the bending and

shear stiffnesses; therefore selective reduced integration is recommended

[24]. In this paper, we will use 2 x 2 quadrature for both the shear and

bending stiffness and stabilize the kinematic modes.

For the purpose of analyzing this stiffness, we perform the steps

indicated in Section 2 in going from Eq. (2.4) to Eq. (2.10) and write the .

element stiffness for 2 x 2 quadrature in the form

Z Z.

:K BT D B (5.8)".-.

where

Bb (xQ1)-.- .

(5.9)

B (QG.

,

• ,'.4

4.',i 
'
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wheree xQ ' a I to nG  are the Gauss quadrature points; in this case nG :4."

0 . . ,.- p

The number of rows in the matrix 8 is 20 so the rank of Ke is at most 20;

the number of degrees of freedom is 27; (9 nodes x 3 degrees of freedom/per

node). Thus, since there are 3 rigid body modes, the rank deficiency of the Yi

element stiffness is at least 4. The singular modes are given in Table 1.

6. Spurious Mode Control for Plate Element

The spurious modes which are of principal concern are the w, 0 and a

modes. The process of control is analogous to that in the Laplace equation, 4-

except that whereas the singular modes in the Laplace equation can be

controlled quite stiffly with values of e of the order of 1, some of the modes

in the plate problem are associated with locking and therefore care must be

taken in their control.

-J For the purpose of the control of these 3 modes, three generalized ,..

strains are defined by

qw q = T (6.1a)
*1~%

.. 4.

.-.

- - . - -. C *:- *-
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q -q 2 = T (6.1b)x 2 1 2

q T 6  (6.1c)

The structure of the proper null-space for the plate is more complex than

for the diffusion equation; it is spanned by the 3 vectors which are called

rigid body modes in Table 1. These vectors include both the linear field

vectors xi and the constant vector s. In spite of this added complexity, the

basic conditions on ii can be reduced to those on C in the diffusion equation:

1. Xi should not affect linear fields:
* -,, r

2. Xi should span the complement of the proper null-space. ..'

Therefore, the same procedure as given in Section 3 can be used to

develop ji and it follows that all three of the xi operators are identical and

given by Eq. (3.17).

The generalized stresses are given by

~Q* qH for i = 1 to 3,(62
.i c i no sum on i

where cH are given by
*1

H rw h2 H D
c1 = (6.3a)

; cH = cH =rolh (6.3b)
c2 c3 r0 HKh(.b

=To.,f bA.i dA (6.4)

.--
"

1 A "

-€. 

-..

.5.:< 
.

. . -
r--



*/o. -. ,

The constant H was herein obtained by 2 x 2 quadrature, but it is likely that

estimates of H with sufficient accuracy could more easily be obtained.

The generalized strain qw, as in the 4 node quadrilateral [13], is

associated with locking, so rw should be small; suggested values are: .

0.01 < rw 4 0.1 . In this range, the results have been found to be almost -- Z.

independent of rw . The normalization of Eqs. (6.3) allows rw to be applicable

to elements with a wide variety of shapes and aspect ratios, for we have found

no locking or evidence of spurious modes with rw in this range. The
w*

generalized strains q2 and q3 are not associated with a locking mode, so re is

usually chosen of order 1.0.

The element stiffness matrix is given by

K = K(2x2) + KH (6.5a)

- H T 

KH H T(6b

0 0 c H T

( -. '.-

where K" is the stabilization matrix and K(2x2) the standard element matrix

obtained by 2x2 quadrature. -

If the degrees of freedom of the element are arranged in the conventional

order with all degrees of freedom at each node in sequence, i.e. with

dT , (w 2,,::
1 (W ex1, 6 y w . . . .  . x9' y9) (6.6) _-._

X1 w2..9...
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then KH can be easily computed by the following formula

For 1 = 1 to 9, J -1 to 9

C1 I yJ L = 31 - 2, K = 3J - 2

KH = HLK c Y1 YJ L = 31 1, K = 3J - 1 (6.7)

c: c3 YI YJ L =31, K =3J ."

H

All other KHK  are zero.

Thus the implementation of this element involves simply the standard

computation of the element stiffness by 2 x 2 quadrature, followed by the

computation of X by Eq. (3.17) (or (3.20)) and KH by the above.

7. Numerical Examples for Plate

Several problems were solved to examine the performance of this spurious ,

mode control procedure in the plate element.

The first problem, example 5, is a clamped, circular plate of radius R

subjected to a uniform load q. Results obtained Mesh B from Fig. 6 for two

values of rw are compared to the analytic solution in Fig. 12. In both cases,

the e - hourglass control, r, = 1.0. The results, as can be seen, are

independent of rw in this range, and agree very well with the analytic

solution.

Figure 13 shows the results for the same problem with rw = 0.1 for the 3

meshes shown in Fig. 6. Even with the coarse mesh, the results agree well

with the analytic solution.

.- '
A04

6' ~.
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Figure 14 shows the convergence rates for this circular clamped plate

problem and a uniformly-loaded square plate problem with clamped supports;

..* the meshes shown in Fig. 3 were used for a quarter of the plate in the square ..

plate problem. The L error is here defined as

22
2  e FEM analytic JI P
E I f (w -w dsl (7.1)

e=1 e

and 5 x 5 quadrature was used to evaluate the above integral in each

element. In all cases, rw = 0.1, re = 1.0

Several points are of interest:

i) The rate of convergence in w for the stabilization method for the square

plate is almost 3.0.

ii) The rate of convergence for the circular plate problem with stabilization

is 2.6. While the initial rate with selective-reduced integration is also

2.6, the convergence rate diminishes as the mesh is refined.

iii) The behavior with an inconsistent hourglass control I = i.e.

where the last term in Eq. (3.17) is omitted, is similar to that

with selective-reduced integration.

While the improved rate of convergence for the circular plate as compared

to the Laplacian on a circular domain may be puzzling at first, it is probably

attributable to the omission of the rotations from the error in Eq. (7.1).

The performance of the method in a problem characterized by severe

singular modes is shown in Figs. 15 and 16, which is a uniformly-loaded square

plate with corner supports, such as that studied in [13]. For small values

of rw, spatial oscillations in w are clearly evident. Figure 16 shows the

normalized displacement of a node next to the center for the corner supported

%.-.,

, . . --. - °"- .- , .'- "
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and clamped square plates. Note that as for the 4-node quadrilateral [13],

the stabilization procedure gives acceptable results for a large range
of rw, so the results are not sensitive to its selection. The clamped plate

locks for large values of rw but exhibits no modes as r tends to zero,

whereas the corner supported plate diverges for small r but does not lock.
w .- v4

Only the intermediate values give acceptable solutions to both problems.

Figure 17 shows the displacements for a circular thick-plate subjected to

a point load at its center. The boundaries are clamped and the following

parameters were considered: E = 1.09 x 10 psi; v = 0.3; thickness h = 2 in;

radius R = 5 in. Mesh B in Fig. 6 was used.

In this case, 2 x 2 quadrature leads to near singularity of the assembled

stiffness, and the results with no stabilization exhibit marked oscil-

lations. Effective suppression of oscillations in this case requires a larger

value of rw (0.1) than in any other problem we have solved, and the displace-

ment at the center is more sensitive to rw.

Figure 18 shows the results obtained for this element in the well-known

"single-element twist" problem [25].

The last well-known difficult problem is the rhombic plate. The two

meshes shown in Fig. 19 were considered. Displacements and moments are

reported in Figs. 20 and 21.

-....

'...'
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List of Figure Captions

1. Nomeclature, local node numbers and quadrature points for 9-node Lagrange
element.

2. Spurious singular mode h.

3. Problem description for example 1: square domain with prescribed

temperature along boundary.

4. Temperature u along B-C for the three meshes for example I with e =1.0.

5. Temperature u along B-C for example 1 with medium mesh
and e = 0.1 and 1.0.

6. Problem description for example 2 and 3: circular domain with Neumann and
Dirichlet boundaries.

7. Temperature y alon the radius coincident with the x-axis for the medium
mesh e = 10 , 10 and 1.0 for example 2.

8. Temperature u along the radius coincident with the x-axis for the three
meshes for example 3 with c = 1.0.

9. Temperature u along the radius coincident with the x-axis for example 3
with e = 0.1 and 1.0.

1U. Convergence rates for examples 1 (square) and 3 (circular) with 2 x 2
quadrature, c = 1.0 and 3 x 3 quadrature.

11. Temperature distributions for example 4, showing the evolution of spurious
oscillations with 2 x 2 quadrature in the absence of stabilization.

12. Displacement w along a radius, line B-C in Fig. 6, for a clamped, circular
plate for two values of rw.

13. Displacement w along a radius, line B-C in Fig. 6, for three meshes for
the clamped, circular plate.

14. Convergence in L norm, Eq. (7.1), for clamped square and circular plates
with stabilizatign (r = 0 1, r = 1.0 ) and for selective reduced
integration; the convgrgence ra~e when = h is also shown.

15. Displacements along a centerline for a uniformly loaded a x a square plate
supported at the corners for various values of rw.

16. Displacement of node adjacent to center for the corner supported plated
and clamped plate for various values of r w .

17. Displacement w along a radius, line B-C in Fig. 6, for a thick, circular

plate with clamped supports for various values of rw.

Iw
10... ,



60

18. Performance of the stabilized element for the single element twist.

19. Mesh for rhombic plate problem; uniformly loaded with simple supports.I

2U. Displacement w of rhombic plate for various values of rw.

21. Comparison of moments with analytic solution for rhombic plate for
rw =0.1, r 61.0 and rw 0.0.*

. . . . . . . . . . ..
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Table 1

Zero-Energy Modes At Biquadratic Plate Element U2
A2

w ex Name

T ~ TT
*Rigid body modes 1 5T U 0T Translation

2 ...T 0 T s T y - rotation

3 0 x -rotation

Kinematic modes 1 hT0 w -spurious

A * T T T T

Ts3) (T +3T)tws

only.

T T T T T

only.
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